3.234 \(\int \frac{(g x)^m (d+e x)^2}{(d^2-e^2 x^2)^{7/2}} \, dx\)

Optimal. Leaf size=216 \[ \frac{2 e (3-m) \sqrt{1-\frac{e^2 x^2}{d^2}} (g x)^{m+2} \, _2F_1\left (\frac{5}{2},\frac{m+2}{2};\frac{m+4}{2};\frac{e^2 x^2}{d^2}\right )}{5 d^5 g^2 (m+2) \sqrt{d^2-e^2 x^2}}+\frac{(3-2 m) \sqrt{1-\frac{e^2 x^2}{d^2}} (g x)^{m+1} \, _2F_1\left (\frac{5}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )}{5 d^4 g (m+1) \sqrt{d^2-e^2 x^2}}+\frac{2 (d+e x) (g x)^{m+1}}{5 d g \left (d^2-e^2 x^2\right )^{5/2}} \]

[Out]

(2*(g*x)^(1 + m)*(d + e*x))/(5*d*g*(d^2 - e^2*x^2)^(5/2)) + ((3 - 2*m)*(g*x)^(1 + m)*Sqrt[1 - (e^2*x^2)/d^2]*H
ypergeometric2F1[5/2, (1 + m)/2, (3 + m)/2, (e^2*x^2)/d^2])/(5*d^4*g*(1 + m)*Sqrt[d^2 - e^2*x^2]) + (2*e*(3 -
m)*(g*x)^(2 + m)*Sqrt[1 - (e^2*x^2)/d^2]*Hypergeometric2F1[5/2, (2 + m)/2, (4 + m)/2, (e^2*x^2)/d^2])/(5*d^5*g
^2*(2 + m)*Sqrt[d^2 - e^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.208358, antiderivative size = 216, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.138, Rules used = {1806, 808, 365, 364} \[ \frac{2 e (3-m) \sqrt{1-\frac{e^2 x^2}{d^2}} (g x)^{m+2} \, _2F_1\left (\frac{5}{2},\frac{m+2}{2};\frac{m+4}{2};\frac{e^2 x^2}{d^2}\right )}{5 d^5 g^2 (m+2) \sqrt{d^2-e^2 x^2}}+\frac{(3-2 m) \sqrt{1-\frac{e^2 x^2}{d^2}} (g x)^{m+1} \, _2F_1\left (\frac{5}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )}{5 d^4 g (m+1) \sqrt{d^2-e^2 x^2}}+\frac{2 (d+e x) (g x)^{m+1}}{5 d g \left (d^2-e^2 x^2\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[((g*x)^m*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(2*(g*x)^(1 + m)*(d + e*x))/(5*d*g*(d^2 - e^2*x^2)^(5/2)) + ((3 - 2*m)*(g*x)^(1 + m)*Sqrt[1 - (e^2*x^2)/d^2]*H
ypergeometric2F1[5/2, (1 + m)/2, (3 + m)/2, (e^2*x^2)/d^2])/(5*d^4*g*(1 + m)*Sqrt[d^2 - e^2*x^2]) + (2*e*(3 -
m)*(g*x)^(2 + m)*Sqrt[1 - (e^2*x^2)/d^2]*Hypergeometric2F1[5/2, (2 + m)/2, (4 + m)/2, (e^2*x^2)/d^2])/(5*d^5*g
^2*(2 + m)*Sqrt[d^2 - e^2*x^2])

Rule 1806

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x
^2, x], f = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x
], x, 1]}, -Simp[((c*x)^(m + 1)*(f + g*x)*(a + b*x^2)^(p + 1))/(2*a*c*(p + 1)), x] + Dist[1/(2*a*(p + 1)), Int
[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[2*a*(p + 1)*Q + f*(m + 2*p + 3) + g*(m + 2*p + 4)*x, x], x], x]] /; F
reeQ[{a, b, c, m}, x] && PolyQ[Pq, x] && LtQ[p, -1] &&  !GtQ[m, 0]

Rule 808

Int[((e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[f, Int[(e*x)^m*(a + c*
x^2)^p, x], x] + Dist[g/e, Int[(e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, p}, x] &&  !Ration
alQ[m] &&  !IGtQ[p, 0]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{(g x)^m (d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx &=\frac{2 (g x)^{1+m} (d+e x)}{5 d g \left (d^2-e^2 x^2\right )^{5/2}}-\frac{\int \frac{(g x)^m \left (-d^2 (3-2 m)-2 d e (3-m) x\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d^2}\\ &=\frac{2 (g x)^{1+m} (d+e x)}{5 d g \left (d^2-e^2 x^2\right )^{5/2}}+\frac{(2 e (3-m)) \int \frac{(g x)^{1+m}}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d g}-\frac{1}{5} (-3+2 m) \int \frac{(g x)^m}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx\\ &=\frac{2 (g x)^{1+m} (d+e x)}{5 d g \left (d^2-e^2 x^2\right )^{5/2}}+\frac{\left (2 e (3-m) \sqrt{1-\frac{e^2 x^2}{d^2}}\right ) \int \frac{(g x)^{1+m}}{\left (1-\frac{e^2 x^2}{d^2}\right )^{5/2}} \, dx}{5 d^5 g \sqrt{d^2-e^2 x^2}}-\frac{\left ((-3+2 m) \sqrt{1-\frac{e^2 x^2}{d^2}}\right ) \int \frac{(g x)^m}{\left (1-\frac{e^2 x^2}{d^2}\right )^{5/2}} \, dx}{5 d^4 \sqrt{d^2-e^2 x^2}}\\ &=\frac{2 (g x)^{1+m} (d+e x)}{5 d g \left (d^2-e^2 x^2\right )^{5/2}}+\frac{(3-2 m) (g x)^{1+m} \sqrt{1-\frac{e^2 x^2}{d^2}} \, _2F_1\left (\frac{5}{2},\frac{1+m}{2};\frac{3+m}{2};\frac{e^2 x^2}{d^2}\right )}{5 d^4 g (1+m) \sqrt{d^2-e^2 x^2}}+\frac{2 e (3-m) (g x)^{2+m} \sqrt{1-\frac{e^2 x^2}{d^2}} \, _2F_1\left (\frac{5}{2},\frac{2+m}{2};\frac{4+m}{2};\frac{e^2 x^2}{d^2}\right )}{5 d^5 g^2 (2+m) \sqrt{d^2-e^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.121814, size = 174, normalized size = 0.81 \[ \frac{x \sqrt{1-\frac{e^2 x^2}{d^2}} (g x)^m \left (d^2 \left (m^2+5 m+6\right ) \, _2F_1\left (\frac{7}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )+e (m+1) x \left (2 d (m+3) \, _2F_1\left (\frac{7}{2},\frac{m+2}{2};\frac{m+4}{2};\frac{e^2 x^2}{d^2}\right )+e (m+2) x \, _2F_1\left (\frac{7}{2},\frac{m+3}{2};\frac{m+5}{2};\frac{e^2 x^2}{d^2}\right )\right )\right )}{d^6 (m+1) (m+2) (m+3) \sqrt{d^2-e^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((g*x)^m*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(x*(g*x)^m*Sqrt[1 - (e^2*x^2)/d^2]*(d^2*(6 + 5*m + m^2)*Hypergeometric2F1[7/2, (1 + m)/2, (3 + m)/2, (e^2*x^2)
/d^2] + e*(1 + m)*x*(2*d*(3 + m)*Hypergeometric2F1[7/2, (2 + m)/2, (4 + m)/2, (e^2*x^2)/d^2] + e*(2 + m)*x*Hyp
ergeometric2F1[7/2, (3 + m)/2, (5 + m)/2, (e^2*x^2)/d^2])))/(d^6*(1 + m)*(2 + m)*(3 + m)*Sqrt[d^2 - e^2*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.507, size = 0, normalized size = 0. \begin{align*} \int{ \left ( gx \right ) ^{m} \left ( ex+d \right ) ^{2} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{-{\frac{7}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x)^m*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x)

[Out]

int((g*x)^m*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{2} \left (g x\right )^{m}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^2*(g*x)^m/(-e^2*x^2 + d^2)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-e^{2} x^{2} + d^{2}} \left (g x\right )^{m}}{e^{6} x^{6} - 2 \, d e^{5} x^{5} - d^{2} e^{4} x^{4} + 4 \, d^{3} e^{3} x^{3} - d^{4} e^{2} x^{2} - 2 \, d^{5} e x + d^{6}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

integral(sqrt(-e^2*x^2 + d^2)*(g*x)^m/(e^6*x^6 - 2*d*e^5*x^5 - d^2*e^4*x^4 + 4*d^3*e^3*x^3 - d^4*e^2*x^2 - 2*d
^5*e*x + d^6), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (g x\right )^{m} \left (d + e x\right )^{2}}{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac{7}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)**m*(e*x+d)**2/(-e**2*x**2+d**2)**(7/2),x)

[Out]

Integral((g*x)**m*(d + e*x)**2/(-(-d + e*x)*(d + e*x))**(7/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{2} \left (g x\right )^{m}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^2*(g*x)^m/(-e^2*x^2 + d^2)^(7/2), x)